What is a Runtime
CNAPP Anyways?

A Deep Dive on Sweet Security

James Berthoty | Latio Tech

This post was completed in collaboration with the team at Sweet
Security who let me use their product to show their runtime CNAPP
capabilities and asked me to speak honestly about the pros and cons
of the platform. Also, to see a demo of Sweet and many other Cloud
Security tools, tune in to the Cloud Security Showdown today!

It's exciting to see Cloud Native Application Protection Platforms (CNAPPs) evolve beyond
their endless posture management (CSPM) origins. The idea of a runtime-first CNAPP is
appealing to anyone who expects their cloud security solution to actually detect and
stop ongoing attacks rather than focusing on only the discovery of posture related issues
and potential vulnerabilities.

In 2025, endless posture scanning is

played out and security teams need ways In 2025, endless posture

to reduce noise and make cloud security scanning is played out and
alerts actionable. That concept of runtime security teams need ways to
actionability has implications for both reduce noise and make cloud

posture and runtime detection events. | security alerts actionable.
suspect people will use these new breeds

of runtime oriented solutions as either

augments to their existing CSPM solutions, or as standalone solutions, depending on the

specifics of their environment and coverage capabilities.

In this report, we'll first talk about where “runtime CNAPPs" fit in the overall landscape of
security products, then discuss what makes Sweet Security’s offering exciting for cloud

security, and finally, what use cases would not be a good fit.

What is Sweet Security?

Sweet Security is positioned in the growing cluster of runtime-first CNAPP solutions, with

capabilities growing into the category | refer to as Cloud Application Detection Response
(CADR). Sweet is meant to enable meaningful detection and response in cloud
environments. They stand out for how they approach detection and response, especially
when it comes to reducing alert noise and helping SOC teams understand what actually
happened during an incident. Additionally, their detection methodology is genuinely unique

among anomaly based detections, with some pros and cons.

02

https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty
https://www.sweet.security/press-releases/sweet-security-introduces-patent-pending-llm-powered-detection-engine-reducing-cloud-detection-noise-to-0-04
https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty
https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty
https://tamnoon.io/cloud-security-showdown/
https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty

Where Sweet Fits in the CNAPP Landscape

Before getting into the product specifics, it's worth briefly reviewing the broader CNAPP
category. Many platforms in this space attempt to unify cloud posture management (CSPM),

Cloud Features

Third Party S T

Data Detection 7,

537 > 7 %
7 Asset Management

Vuln Management . ~
-

———

% 7/
,” Dota Normalization \/\’\

Y 1N Agentless Vuln Scanning \
7 \

Data De-dthcc\tTon ‘ \\
' / | Identity Findings Posture Findings \
" Vulnerability Prioritization 1
' Y 1 1

\ WorkElows ,' Cloud TIncdents T~ !
E i >
¥ ; / API Discovery

\ ¥ %

’

ASPM Workload Sensor |
'3

z

. .
Z mal g
L \\Coo!e, £o Cloud Anomaly Detection

Z / Toxic Combinations /e
/
SAST > ; ’
DiST 72 ' Containers ’
ScA) //
IaC e i
Secrets VA
sblLe 1
Container Scanning \yu|nerabi|itq Prioritization

Threat Mov(e“‘vng ‘\

\ Alert Tuning
i LiBru\r\f ADR
A

% Malware

SOAR

N

APTL ADR

Log Querying

7

-
-

-

Runtime Features

A

’
’

\
3
\

/

\
\

EDR Capabilities |
|

1

i

]

vulnerability management (CTEM), code scanning (ASPM), and runtime protection (CADR). The

problem is, most of them either spread themselves too thin, or bolt on features that lack
depth. Larger platforms have long failed to be the single pane of glass for everything, and that
has led to weaker performance at the edges. As a result, many teams end up pairing
specialized tools rather than relying on single platforms. The go-to example of this is Aqua

(runtime) and Orca (posture) having a partnership, despite offering the same features on paper.

Sweet fits into the landscape as a strong option on the runtime side. It's not trying to be
everything from code to cloud to third party vulnerability management, but instead offers
meaningful detection capabilities, vulnerability discovery & prioritization, and API security

capabilities.

Personally, I'm a fan of this approach, and what is becoming a new category in Cloud Application

Detection and Response (CADR). Instead of trying to pretend that all of these offerings are one
massive tool (CNAPP), we can acknowledge that we're really talking about four distinct
clusters of capabilities, each of which are built for different security users. Every vendor
chooses particular features from these clusters to implement, but it’s overly reductionistic to

refer to them all as a single thing and assign a grade.

03

https://www.aquasec.com/news/orca-security-partner/
https://www.aquasec.com/news/orca-security-partner/
https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty

Vuln Management Code Cloud Runtime

I
<)

%

CTEM

CNAPP

At the end of the day, securing large complex cloud systems requires some combination
of four capabilities:

1. The ability to deeply scan and contextualize their code findings (ASPM). These tools
are for helping developers fix issues with code.

2. Visibility of cloud assets with information from vulnerabilities to technologies being
deployed (CSPM). These tools are for helping cloud engineers fix misconfigurations in
their cloud environments.

3. Best in class cloud workload protection (CADR). These emerging tools are to make
cloud security operations achievable - whether for traditional SOC teams or emerging
product security incident response teams.

4. A place to consolidate vulnerability data for reporting and actioning (CTEM). These are
for vulnerability management teams in large distributed environments. Whether or not
this should be merged with CSPM ['ll leave up to the reader, | could go either way.

Unfortunately, CNAPP just means some
amount of these four things is happening,
which is why | prefer keeping the

acronyms distinct. But in this case, | use Whether or not this should be
Runtime CNAPP and CADR merged with CSPM I'll leave up to
interchangeably - enabling best in class the reader, | could go either way.

cloud workload protection will come with
some CSPM functionalities that makes the
tools competitive.

04

A brief note on identity and DSPM, | usually lump these features up into
CSPM because they are extensions of the same data, but it’s fair play to
argue for them as separate categories.

Runtime Detection:
Xy Where Sweet Shines

V)

insecure-app-7c8cd6495c-mf4z9

[usr/bin/python3 /app/app.py //emr\

Cross-Site Scripting (X55) attempt detected Read environment variables Interactive Terminal Session

L7 Suspected Attack Process Execution Process Execution

Let’s start where Sweet was the strongest. In testing, Sweet stood out for its
approach to incident correlation. Where other detection tools tend to drown you in
alerts, often firing off dozens of findings for a single attack sequence, Sweet does a
much better job summarizing what happened into a single understandable attack
chain. It ties together bash execution, container drift, file tampering, and network
behavior into a coherent incident view.

If the main failure of operationalizing cloud security operations is the SOC not
understanding cloud alerts, Sweet does a great job breaking down the attack.

05

Story +:al

1 Initial Shell Access The sequence begins with a bash shell execution (/bin/bash) followed by user identification commands like groups , whoami ,and id -u .This

suggests an attacker gaining initial access and attempting to understand their environment.

2 PowerShell Execution Multiple commands are executed from a PowerShell environment { pwsh), including repeated user identification checks. This indicates the attacker is

using PowerShell for further exploration.

3 Atomic Red Team Script Download A curl command downloads a script atomic.sh from the Atomic Red Team GitHub repository. The command curl -sO https://raw.gi

thubusercontent. com/redcanaryco/atomic-red-team/master/atomics/T11685/src/atomic. sh is executed, followed by changing its permissions to executable.

4 Network Information Gathering The attacker uses the ip command multiple times to view network interface information, suggesting reconnaissance of the network

environment.
5 Attemptto Cover Tracks The command rm /root/.bash_history is executed, indicating an attempt to erase command history and cover tracks.

6 Container Escape Attempt A complex command involving kubectl and nsenter is executed, suggesting an attempt to escape from a container environment and gain

access to the host system.
7 File System Manipulation The attacker attempts to mount a device (/dev/dm-8) to a new directory (/mnt/T1611.882) and create a cron job, potentially for persistence.
8 Network Scanning A network scan is initiated using nmap with sudo privileges, targeting the 192.168.1.0/24 subnet on port 80.

9 Continued Reconnaissance The sequence ends with more network interface checks using the ip command, indicating engeing system exploration.

For example, when running a series of Atomic Red Team tests, including container
escapes and file manipulations, Sweet correctly identified each technique and
grouped them into a single, understandable attack chain. The tool provided clear
details about what was run, which pods were involved, and how the activity
unfolded. It also offered full process logs for investigation.

Story + Al

1 Attacker downloads and installs AWS CLI The attacker begins by downloading the AWS CLI installation package using curl from https://awscli.amazonaws.com/awscli-

exe-linux-x86 64.zip . They then unzip the package and install itto /tmp/aws-cli .

&3

Attempt to create "eviladmin® IAM user Using the installed AWS CLI, the attacker attempts to create a new IAM user named eviladmin . This action is executed with the

command /tmp/aws iam create-user --user-pame eviladmin .

w

Listing and accessing S3 buckets The attacker lists available S3 buckets using /tmp/aws s3 1s . They then proceed to list objects in specific buckets, including iamgescann

erlatio , cf-templates-yr@ndéy@Sxkd-us-east-1 ,and config-bucket-455867489959 .

=

Downloading sensitive files from S3 The attacker downloads files from various S3 buckets, including a file named secure.txt from the latio.tech-test bucketand soc

ials.txt froma bucket named wooooothisisasecurityriskboy .

5 Broad AWS resource enumeration The attacker executes a series of AWS CLI commands to enumerate various AWS resources, including IAM users (aws iam list-users),
EC2 instances (aws ec2 describe-instances), S3 buckets [aws s3 1s), Secrets Manager secrets (aws secretsmanager list-secrets), and CloudTrail trails (aws clo

udtrail describe-trails).

@

Accessing EC2 instance metadata The attacker interacts with the EC2 instance metadata service at http://169.254.169.254 , attempting to retrieve the IAM security

credentials associated with the instance.

-

Checking for AWS credentials in environment The attacker uses the env command to list environment variables, specifically grep'ing for AWS-related variables, likely to

confirm the presence of the compromised credentials.

@

Web application vulnerability exploitation A suspected Local File Inclusion (LFI) attack is detected, with the attacker attempting to execute AWS CLI commands through a web

application vulnerability at the /app/result endpoint.

The most fun part of testing Sweet is how it will call me out if it notices the attack
not working. The drift and manual detections correlate behind the scenes to deftly
craft an accurate story of what happened, even when that involves making
mistakes. In the SOC, this context is critical and the difference between pinging
the DevOps team one time with a complete story of what happened and fifteen
times trying to track down a false positive. | also managed to get my test
environment infected by a real attacker, but it was immediately clear what was
happening in the environment.

Akamai ingress-nginx-controller’
External CDN Provider Deployment

\:#
/
—~ insecure-app
@‘ = Deployment
Chattiest inbound

It's also worth mentioning how the detection capabilities cross between API, cloud
and workload layers. Sweet applies this detection methodology across all of the
attack layers to identify when attacks pivot into the cloud from the workload.

The ability to create custom detection rules is essential to security operations
teams as well. You can define behaviors, like outbound calls to suspicious IPs, that
should trigger alerts, allowing for tuning and proactive guardrails. SOAR capabilities
are limited, but this is far ahead of where most security teams are at. Basic
capabilities like killing processes work well but teams looking to build fully
automated response pipelines should look towards the Torq integration.

07

Attack Attempts - Dispiays all application attack attempts within your environment

Amounts of Attack Types Top 3 Target Services Top 3 Sources Authenticated vs Unauthenticated
@ ingress-nginx-controller 10 ® 1001137 7
o LFl 6 /
. © Auth
‘ 13 %5 4 @ insecure-js 2 ® 100221 4 13 dnenticatad "
Total © Command Injection 2 Total © Unauthenticated 3
SQL Injection 2
QLB @ insecure-app 1 ® 100370 2
GroupBy Attacktype Service Response statuscode Source m
Q Search Attackiype v Sewerty v ResponseStatusCods v OWASP v Service v Risks v Accownt v LastTimestamp -+ Addfiter Clear A B S wo
Attack Type Seve... Service Respo.. Source Destination OWASP Last Timestamp 1= Path
SQL Injection b @ insecure-js * 200 ©® 100370 1 A03:2021 @ about 7 hours /
Xss Critical @ insecure-app ® 200 © o022 5 fap... A03:2021 © about 7 hours .. /appiresult
SQL Injection i @ insecure-js * 200 © 10.01137 1 A03:2021 © about 7 hours /
LFI @ ingress-nginx-contr... ® 404 O w0221 GET J<id>finfo.php A03:2021 © 3daysago J<id>finfo.php
LFI @ ingress-nginx-contr... ® 404 © 10221 ET .gittHEAD A03:2021 © 3daysago /.git/HEAD

Despite being a newer feature, application layer attack detection worked really

well and was well summarized. In the above screenshot, | saw both some of my
own application attacks, as well as some web crawlers trying to exploit
non-existent PHP services. In keeping with the noise reduction, my actual attacks
triggered stories, while the unsuccessful crawlers were logged without
triggering incidents.

[/ XSS Attack Attempt and Environment Inspection on "k8s-ingressn-ingressn-82d2ac5h41-
dOcabe97a6326e5d.elb.us-east-1.amazonaws.com’

ate a ticket (O Comments ® Open v

A suspected XSS attack was detected on the application server, followed by an environment inspection. The attacker attempted to

exploit an XML External Entity (XXE)

ability and later executed the env command, potentially to gather sensitive

information including AWS cred:

s General details
:= Overview -
Story + Al

90 Investigation "
= 1 XSS Attack Attempt An XSS attack was detected on the application server. The attacker sent a POST request to /app/resu Asfotiymous
1t on k8s-ingressn-ingressn-82d2ac5bd1-daca6ed7a6326e5d.elb.us-east-1.amazonaws.com with an XML payload ccounts
attempting to exploit an XXE vulnerability to read /etc/passwd . 455067489950
2 Environment Inspection Following the XSS attempt, the env command w xecuted on the server. This command Machines
displays all environment vari hich could potentially expose sensitive information such as the AWS credentials (AWS_ @ insecure-app-7c8cdB495c-mfdz
ACCESS KEY ID and AWS_SECRET_ACCESS KEY) present in the environment.
8. Sensor - Application-L7
Incident impact 4. Al e
> B

s The attacker attempted to read the contents of /etc/passwd through an XXE vulnerability.

e Sensitive environment variables, including AWS_ACCESS KEY ID and Al

ECRET_ACCESS_KEY , may have been exposed.

May 31, 2025, 9:41:21 AM

May 31, 2025, 9:46:09 AM

Top events +; Al

[usr/bin/python3 fapp/app.py
This event shows a clear XSS attack attempt using XXE, t

to read sensitive system files Q@ insecure-a.

08

If you're new to cloud security, you may not instantly recognize how cool the
above screenshot attack story is. In isolation, a DevOps team member might look
at the environment variables in a running pod, triggering an alert that an analyst has
to go and hunt down; however, a DevOps team is hever running an XML injection
payload before doing that. This is a critical example of where the application layer
enables meaningful response.

The ability for SecOps teams to get actionable application insights is what CADR is
all about, and it's awesome to see more from vendors.

It's also worth briefly mentioning that unlike many other runtime focused providers,
Sweet also provides support for Windows OS, enabling them to be a one stop
replacement for your runtime security.

Where There's Still Room to Grow on Detections

. Suspected Path Traversal Attack - LF| = May1s, 2025, 9:37:59 M

Description

The container accessed a path that includes direct references to system files (e.g., ‘/etc/passwd!', /.ssh/authorized_keys')
without using traversal syntax. This behavior suggests exploitation of an LFI vulnerability that accepts absolute paths,
bypassing traversal-based detection.

ng Ty
S L7 Suspected Attack

S. Sensor

S. Medium

@ Malicious

MITRE ATT&CK tactics: MITRE ATT&CK techniques:
TAO0OS - Defense Evasion T1006 - Direct Volume Access

L7 Suspected Attack ~

9
hod: POST
h: fapplresult
1d: LRI
command=/tmp/aws iam list-users && /tmp/aws ec2 describe-instances && /tmp/aws s3 Is && /tmp/aws secretsmanager list-sec... .t

1p: May 18, 2025, 9:37:59 AM

The attack summaries could also have pros and cons when striking that delicate
balance between too much noise and not enough. Every meaningful test |
conducted got a story created; however, some individual events would trigger a
finding. To be clear, the sensor always detected the event, so custom alerting
would still have caught the attack, but it wasn’t always rolled up into an entire
incident. To be honest, due to the noisiness of most cloud detection tools, | think
Sweet struck a good overall balance when deciding what to alert about as critical.
Every security tool has to strike a balance on deciding what to service, and Sweet
did a good job.

09

While it wasn’t in the Ul at time of
testing, I'm extremely excited for | think Sweet struck a good

overall balance when deciding
what to alert about as critical.

Sweet’s soon to be launched potential
misconfiguration detection. One of
the key challenges in cloud security in
the SOC is differentiating interesting
events from impactful ones; Sweet picks up a lot of activity that the security team
might be interested in, but isn’t necessarily related to an attack. Automatically
delineating between these events is awesome and helps give security teams real
time visibility without clogging up their alerts.

< AWS Load Balancer Controller creates security group with open SSH access ('sg-0847f0cabec460381)

Story

@ aws-load-balancer-controller Apr 18, 2025, 224118

Apt 18, 2025, 22423 ...

Incident Impact

For example, in this test case | opened my cluster to the internet, and Sweet alerted
me to it as a potentially suspicious change (in this case it was a classic oopsie in
my terraform). Similarly, Sweet alerted me when | made some impactful IAM and S3
configuration changes. I'm excited for when these are surfaced as interesting
misconfiguration findings rather than alerts.

10

(™ . Vulnerability Insights:
Better than Average

Vulnerabilities

5.3K (100%) 174 (3.31%) 94 (1.79%) 45 (0.86%) 19 (0.36%) [
Total Loaded Executed Inbound Fixable Exploit in the Wild
GroupBy Vulnerabilties ~ Packages ~ OS Images Workioads Attack Labels
Q search Risk © SweetScore v Attack Labels v + Add filter Clear All B < W
Vulnerabili Image Workload Risk Indicators Status
& CVE-2023-22578 D .o [Cofisedcrb/ibactts)s @ insecure-js /insecure-fs Fixeble 42 ® Open
© CVE-2019-10748 S9a) v-0s |yg SIS jconfusedcrib/ihsectee f @ insecure js / insecure-] js Fixable 42 ® Op:
- = 2iblg i
& CVE-2022-37434 V-2 @-~ ® java / ja Executed 42 ® Open
CVE-2024-2961 PR B CORLESCCit ISecLs 1 @® insecurejs /insecure-js Beecuted 3 ® Open
R — = on g Seavelze confusederibfinsecure-js @ insecurs S— s D @ sion
& CVE-2019-10752 vas [e coptisaderit/aecs > @ insecure s /insecure-| s Fxable 2 ® Open @

Sweet includes vulnerability discovery and management capabilities amplified
by runtime data and LLM based prioritization. At a basic level, Sweet can prioritize
with the standard loaded/executed and network reachability distinctions. For the
execution detection, reliability seemed based on language, and | didn’t see any
function level reachability happening. This data carries into detection by optionally
integrating your container registry.

Group By Vulnerabilities Packages 0s Images Workloads Attack Labels

Reasoning: The vulnerability remains highly critical (9.4)
Q, Search Risk despite low exploitation probability in the wild (-0.4). The s Sweet Score v Attack Labels ~
workload accepts inbound connections and the package is
loaded in runtime, maintaining the high risk. The SQL injection
Vulnerahili vulnerability in a core ORM functionality represents a

significant threat to data security Image
sequelize confusederib/insecure-js
o CVE-2023-22578 S.0.4 4 -0.4 q) .l’ l
sequelize confusederib/insecure-js
i CVE-2018-10748 §.94 4 -0.4 Js _q_) _ .u 4 l

However, the Sweet scoring was surprisingly accurate, understanding the nature of
the packages and their common usages in applications, and prioritizing based on
the context of the app.

n

{3 CVE-2023-22578 « rirst detected May 8, 2025, 10:27:23 PM Last detected May 17, 2025, 1:33:16 AM ® Open

sequelize vulnerable to SQL Injection
Investigation
Sweet Score Reasoning

The vulnerability remains highly critical (9.4) despite low exploitation probability in the wild (-0.4). The workload accepts inbound connections and the package is loaded in runtime, maintaining the high risk.
The SQL injection vulnerability in a core ORM functionality represents a significant threat to data security

Technical impact
Suceessful exploitation allows reading, mod\fymg or deleting data from the database. Depending on database permissions, attacker could potentially execute arbitrary SQL commands aﬁecring database

integrity and confidentiality

Graph

Inbound Connections

O— —@——0@

insecure-js sequelize CVE-2023-22578
4.441 Exploitabilty probabilit

With remediation guidance, the effected image layer is given, but the LLM
remediation guidance was usually not that helpful.

Some critical context for fixing

container vulnerabilities, like base

image versions, fix availability per

distro, or whether a vulnerability is T e e
fixable in an upstream layer is missing. | mmmmmmmm—
These are the kinds of details teams
need in order to actually remediate
issues at scale - and details most

CNAPPs don't provide.

> Incident has been created on a public facing workload with critical executed vuinerabilities

> Plaintext secrets and critical executed vulnerabilities found on public-facing workload

Prioritization is present, and Sweet shows the patterns to highlight “toxic
combinations” of exposed services and critical vulnerabilities. The implementation
here is functional but basic. It's also worth mentioning the biggest feature gap on
the vulnerability side - the lack of agentless scanning.

12

Posture and Asset Management

Compliance
By framework CIS K8s Benchmark v1.9.0
Passed Checks Cis kas Benchmark v1.9.0

Compliance Posture by Assets

20 passed out of 31 checks 75.89% of assets are fully compliant

65%

¥ 4-Worker Node Security Configuration 190f23

v 41- Worker Node Configuration Files 60f 10

> 417-Ensure that the Kubelet service file permissions are set to 600 or more restrictive... 1of1

> 41.2- Ensure that the kubelet service file ownership is set to root:root (Automated) 101

> 41.3-1f proxy kubeconfig file exists ensure permissions are set to 600 or more restricti... 0of1

75.89%

Sweet includes some basic CSPM functionality, including compliance checks and

hardening recommendations, but the depth is limited. Teams used to richer policy
management or better search and customization will find these features

underwhelming. Asset visibility is also skewed toward containerized environments,

with gaps in coverage for unmanaged assets unless a sensor is deployed.

The topology view provides a helpful

—{)us-east-1

visual of how services connect with
the sensor showing service to service
traffic. | appreciated how all
meaningful AWS assets are mapped in
the topology instead of only showing

workloads - it was great to see my
critical lambda functions grouped in

user_favorite

with the clusters. Unfortunately, only

basic data exists for workloads without

security-vpc

the sensor installed.

user_vote vote

vpc-01cfOcdBfic...

ekscll-sec-test...

the biggest feature gap on the
vulnerability side - the lack of
agentless scanning.

13

é API Catalog and Identity Data

C—)
O0—0—O0
API Catalog
All Exposed Endpoints Data Services Al Services External Services Internal Endpoints
Services with Risks Services Handling Sensitive Data at Risk
7Pl
9 ® Unauthenticated 6 @ Unauthenticated 5
Total Unencrypted 3 Unencrypted 3
Group By Host Service (21) None
Q, Search Host ~ Method ~ Path + Resource v Technologies v Application « Sensitive Data v Risk
First Seen Last Seen Show IP Host: X No » X + Add filter Clear All
> £ insecure-java 14 Endpoints
> & aws-cloudtrail-logs-455067489959-4a93b187 3 Endpoints
> (@ insecure-js 2 Endpoints
> (@ insecure-app 3 Endpoints
> 3 United States 1Endpoints

It's been exciting to see API security grow into a feature of CADR, as gathering this
application layer data has long been a missing point of context for understanding
cloud workloads. Understanding API catalogues and regular traffic is foundational
to understanding how workloads are operating and detecting application layer
attacks. In testing, Sweet was able to helpfully group by either hostnames or service
names to know exactly what APl endpoints a service was surfacing.

Understanding API catalogues and regular traffic is foundational to
understanding how workloads are operating and detecting application
layer attacks.

14

«dentities

Secrets Non Human Identities Human Identities

Secrets Secrets by status

® Open
21 ® Other 20

© Resolved
Total Plaintext 1

® Cosed

GroupBy ~ Name Workioad Redacted Value Type Cluster Namespace m

Q search Target v Type v Namespace v Resource v Workicad v Managed v
) status ~ + Addfiter Clear Al
Account Name Source Last Workload Last Detected =
4550678 oy GF SECURITY.. 0 Manifest @® prometheus-g.. O 3
4550674 o REQ PASSWO.. T Manifest @ prometheus-g.. @ 3minutesago
ASSOB7A... & \pwind-client-.. 18 AWSSecret.. - s

Secrets by technologies Top 5 Most Severe Insights

21 & Critical 1
0 3 s 3 B2 +1
o 0 Plaintext 0 Plaintext 0 Plaintext 0 Plaintext
High 4
Used Plain text v Has Value ~ Account it~ B S

Target Redacted Va... Insight Count Severest Ins... Status
0 - © Open
0 - © Open
ot Upwind - 1 © Open

Identity was an unexpected but strong functionality in the platform. Sweet does a
good job highlighting non-human identities and associated risks thanks to its
runtime visibility. It's not building behavior-based IAM policies yet, but the
foundational data is solid - especially the NHI detection.

Integration and Workflow

Sweet offers the standard integrations for event forwarding, ticketing, and
notifications. Nothing particularly novel here, but it covers the basics well enough
for most SOC workflows. The workflow capabilities aren’t incredibly mature, but
probably assume that is happening more in other tools.

Its ability to correlate attacks and reduce noise is a clear strength.

15

%@ Final Take

Incidents

Incidents over time ® Critical ® High ® Other = = Learning time Last week open incidents @ Incident status @

& Critical : & Manual o
Total
__ —— | High 5 B Manual o

S.. Type Name Last finding time 1= Labels Findings Account Cluster Source Entity Status

455067489959

£ 8. Sensor AWS CLiInstallation and Gredential Abuse with .. O about6 hors ago 227 % securitytestin.. (@ insecure-app-... ® Open

455067489959

& Logs Adminuser ‘adminboi’ attaches 'SecurityAudit ... ® zbous 15 - & adminboi Open

455067489959

& Logs Suspicious AWS API Activity from ‘IntruderAcco... © 979 - @ 645210253 ® Open

& Logs "Extensive AWS Environment Reconnaissance b... © 1dayago 489 2004000000 - @ 645210247 ® Open

Sweet Security is a strong runtime detection platform, particularly for teams
looking for better incident context and alert fidelity. Its ability to correlate attacks

and reduce noise is a clear strength. Especially for teams looking for a simple
workload protection tool to enable their SOC and Cloud Security teams to better
respond to runtime alerts, they have a strong offering.

As I've written elsewhere, I'm not a believer in the all-in-one CNAPP Megazord
that gobbles up the security budget; however, if you're looking for that full feature
list CNAPP replacement, i.e. something that has a check the box offering on
everything from your asset and vulnerability management, compliance posture, 1aC
scanning, and code security, Sweet does not have all of these capabilities. The
runtime piece is more mature than most of the larger competition, but the other
areas are less developed.

Rather than being a drawback, | think these solutions are especially well paired with
robust application security scanning solutions that surface vulnerability findings to
developers. As part of a layered approach that includes a solid ASPM or shift left
application security tools, Sweet is the runtime complement to secure the
applications once they're deployed. | believe teams with cloud native architectures
should adopt a strong ASPM platform alongside a runtime CNAPP (or CADR) in
order to get true code to cloud coverage and application protection. For larger

enterprises with highly distributed environments | typically recommend separate
CSPM, CADR, and ASPM platforms to allow each to really get operationalized to its
fullest extent.

16

https://www.sweet.security/?utm_campaign=13231219-James%20Berthoty&utm_source=Jamesberthoty
https://list.latio.tech/#best-ASPM-tools
https://list.latio.tech/#best-CDR-tools

Overall, Sweet is a great tool for teams looking to get runtime protection of their
cloud environments. It's not the best tool for teams looking primarily for basic
cloud asset visibility and vulnerability management, or for establishing code to
cloud pictures for vulnerability remediation; however, | don’t want to sell the CSPM
features short either, they're pretty good. My practitioner preference has always
been keeping these tools distinct where possible: CSPM, ASPM, and CADR. | would
certainly include Sweet in any evaluation for runtime oriented cloud security
capabilities.

Let’'s back up and answer the question, “what is a runtime CNAPP?” The answer is a
tool that helps you deeply understand your cloud workloads, and that you can trust
to find attackers in your environment. And that’s Sweet.

The answer is a tool that helps you deeply understand your cloud
workloads, and that you can trust to find attackers in your environment.

17

	Sweet - What is a Runtime CNAPP Anyways - doc design 1
	Sweet - What is a Runtime CNAPP Anyways - doc design 2
	Sweet - What is a Runtime CNAPP Anyways - doc design 3
	Sweet - What is a Runtime CNAPP Anyways - doc design 4
	Sweet - What is a Runtime CNAPP Anyways - doc design 5
	Sweet - What is a Runtime CNAPP Anyways - doc design 6
	Sweet - What is a Runtime CNAPP Anyways - doc design 7
	Sweet - What is a Runtime CNAPP Anyways - doc design 8
	Sweet - What is a Runtime CNAPP Anyways - doc design 9
	Sweet - What is a Runtime CNAPP Anyways - doc design 10
	Sweet - What is a Runtime CNAPP Anyways - doc design 11
	Sweet - What is a Runtime CNAPP Anyways - doc design 12
	Sweet - What is a Runtime CNAPP Anyways - doc design 13
	Sweet - What is a Runtime CNAPP Anyways - doc design 14
	Sweet - What is a Runtime CNAPP Anyways - doc design 15
	Sweet - What is a Runtime CNAPP Anyways - doc design 16
	Sweet - What is a Runtime CNAPP Anyways - doc design 17

