
01www.sweet.security

Sweet for CloudSec
& DevSecOps
From misconfigurations to runtime reality.  
Get ahead of what’s truly risky.

Runtime Context DevSecOps Can Trust
Break down siloes between security and development. Sweet unites both teams around shared runtime context, so
when security flags a risk, it comes with the evidence developers need to act quickly. No false alarms. No blockers.

CSPM Toxic Combinations
Attack Path

Analysis
Container &

Kubernetes Security

 Identities Security
Network

Connections
Topology & Asset

Management
Compliance

Management

Know Which  
Misconfigurations Are Dangerous
CSPM with runtime context, not just config snapshots.  
With Sweet’s real-time monitoring, you’ll see:

Which misconfigurations are exposed to the internet or
have cross-account access

When a misconfiguration occurred, with complete context
on what role/identity caused the change

Which roles or identities are used actively, not just over-
permissioned

Where vulnerabilities exist in running workloads
(containers, EC2, serverless)

Which workloads are both misconfigured and  
under active threat

Sweet for CloudSec & DevSecOps
From misconfigurations to runtime reality. Get ahead of what’s truly risky.

terraform { required_providers { aws = { source = "hashicorp/aws" version = "~> 3.27" } } } provider "aws" { profile =
"default" region = "us-west-2" } resource "aws_instance" "app_server" { ami = "ami-830c94e3" instance_type =
"t2.micro" tags = { Name = " " } } resource "aws_lambda_function" " " {
 "${local. }/ variables = { DYNAMODB_TABLE_NAME = ${local.lambda_code_filename}" =

"index.lambda_handler" r = aws_iam_role.iam_for_lambda.arn
timeout = 30 depends_on = [null_resource.] { = {

_table.book-reviews-ddb-table.id}" } }} terraform { required_providers { aws = { source =
"hashicorp/aws" = "~> 3.27" } } } { profile = "us-west-2" } resource
"aws_instance" "app_server" { ami = "ami-830c94e3" instance_type = = {

 } } "aws_lambda_function" " "
{ DYNAMODB_TABLE_NAME = ${ .lambda_code_filename}" handler = "index.lambda_handler" runtime =

 function_name = review" _lambda.arn depends_on =
[null_resource.build_lambda_function] { DYNAMODB_TABLE_NAME = "${aws_dynamodb_table.book-
reviews- } }} . terraform { required_providers { aws = { source =
} } } provider "aws" { profile " region = "us-west-2" } resource " " "app_server" { =
"ami-830c94e3" instance_type = "t2.micro" tags = { Name = "ExampleAppServerInstance" } } resource "aws_lambda

_review" DYNAMODB_TABLE_NAME =
${local. }" handler = "index.lambda_handler" runtime = "python3.8" function_name = " -book-

 role = aws_iam_role.iam_for_lambda.arn timeout = 30 depends_on = [.]
environment { variables = { DYNAMODB_ e.book-reviews- - .id}" } }}
terraform { { aws = { source = "hashicorp/aws" version = "~> 3.27" } } } { profile =
"default" region = "us-west-2" } resource _server" { ami = "ami-830c94e3"

 nce" } } _function" "publish_book_review" { filename
= "${local.building_path}/ = { = ${local. }" handler =
"index. " "python3.8" function_name = "publish-book-review" role = aws_iam_role. .arn

 = 30 = [.build_ n] environment { variables = { DYNAMODB_TABLE_NAME =
-table.id}" } }} } } resource

" " " " { filename = "${local.building_path}/ variables = { DYNAMODB_TABLE_
${local. }" handler = " _handler" = "python3.8" function_name = " -book-
review" = aws_iam_role. . timeout = 30 depends_on =
environment { DYNAMODB_TABLE_NAME = {aws_dynamodb_table. -reviews- } }} .
terraform { { aws = { source = provider
default" = "us-west-2" } "aws_instance" "app_server" { ami = "ami-830c94e3" =

"t2.micro" tags = { Name = "ExampleAppServerInstance" } } resource "aws_lambda_function" "publish_book_review" { filename
= "${local.building_path}/ variables = {

ExampleAppServerInstance
handler

build_lambda_function variables

Name =
" " publish_book_review

ami

lambda_code_filename
build_lambda_function

timeout

publish_book_review
publish

iam_for_lambda
ddb-table. }"

region instance_type

publish_book_review filename
= building_path

runtime = "python3.8" eview" role
environment

 "t2.micro" tags
ExampleAppServerInstance

local
"python3.8" role = aws_iam_role.iam_for

environment
ddb-table.id}"

= "default aws_instance

"publish_book { filename = "${local.building_path}/ variables = {
publish

ddb
required_providers provider "aws"

"aws_instance" "app
 tags = { Name = "ExampleAppServerInsta

DYNAMODB_TABLE_NAME
runtime = iam_for_lambda

null_resource lambda_functio
"${aws_dynamodb_table.book-reviews-ddb

arn
"$

required_providers "aws" { profile =
"

function_name = "publish-book-

version = "default" region

resource

"hashicorp/aws" version = "~> 3.27"

_function"

table

instance_type =
resource "aws_lambda

variables lambda_code_filename

aws_lambda_function
index.lambda

[null_resource.build_lambda_function]
variables = { id

resource

DYNAMODB_TABLE_NAME =
"${aws_dynamodb

provider "aws"

 "publish-book- timeout = 30
variables = {

review" null_resource

"t2.micro"

depends_on
"ExampleAppServerInstance"

NAME =
lambda_code_filename runtime

role

"hashicorp/aws" version = "~> 3.27" } } }

{ filename = "${local.building_path}/
variables =

TABLE_NAME = "${aws_dynamodb_tabl

lambda_handler

book

https://www.sweet.security/

Sweet for CloudSec & DevSecOps

02www.sweet.security

Prevent Breaches by Surfacing Toxic
Combinations Before They’re Exploited
Real breaches don’t come from one misstep; they come from the
wrong things lining up. Sweet identifies toxic combinations that
should never coexist, such as:

A vulnerable container + exposed secret on disk

A privileged IAM role + usage from unusual location or
service

Which roles or identities are used actively, not just over-
permissioned

An API receiving sensitive data + no authentication +
cross-account usage

A public-facing workload + CVE executed in runtime +
outbound connection

Address Identity and Vulnerability Risks That
Actually Matter
Get the context you need to focus on real risks, not theoretical
CVEs, including:

Vulnerabilities running in production and exposed to
traffic

Packages reachable via API endpoints or auth flaws

Unusual role assumptions and identity chaining

Shadow or inactive high-privilege accounts

Public, cross-account, and lateral movement paths

Built for Complex Cloud Environments
Whether you’re in one AWS account or managing dozens across orgs, Sweet supports:

Multi-account,
multi-region

visibility

Cross-account
session tracing

Context-aware
baselining 

(e.g., flag access
outside business
hours or regions)

Support for EC2,
EKS, Fargate, and
hybrid workloads.

https://www.sweet.security/

03www.sweet.security

Sweet for CloudSec & DevSecOps

AWS

Cross-account session
tracing

EKS

Self managed
Kubernetes

Any self
managed
Kubernetes

Virtual Machines ECS2

Container
Management Service

ECS

Serverless Compute
for Containers

AWS
Fargate

Azure

Managed Kubernetes AKS

Self managed
Kubernetes

Any self
managed
Kubernetes

Virtual Machines
Azure
Virtual 
Machine

Google Cloud Platform

Managed Kubernetes GKE

Self managed
Kubernetes

Any self
managed
Kubernetes

Virtual Machines
Google
Compute
Engine

Private Cloud

Managed Kubernetes Any K8S

Self managed
Kubernetes

Any self
managed
Kubernetes

Virtual Machines

Any virtual
machine
(Linux
based, see
details
below)

Integrations
Sweet offers SOC, IR, DevSecOps, and AppSec teams a
wide array of integrations across SIEMs, SOARs, alerting
and ticketing systems.

Detect threats in real time. Take action faster.

https://www.sweet.security/
https://www.sweet.security/demo

	Sweet for cloudsec devsecops solution page to PDF1
	Sweet for cloudsec devsecops solution page to PDF2
	Sweet for cloudsec devsecops solution page to PDF3

